
Problem Definition I/O-CPQA 2D I/O Maxima

We study the problem of maintaining a planar point set Pے R2 under the

modifications of insertion and deletion. Given two points p,q є R2 we say

that p dominates q iff x(p) ≥ x(q) ˄ y(p) ≥ y(q), i.e. all coordinates of p are

larger than those of q. The maximal points of S ے P are all the points of S

that are not dominated by any point in S.

We want to support 3-sided orthogonal skyline reporting queries for the

point set P, i.e. reporting all maximal points in S∩P where S=[x1;x2] X [y;∞].

The I/O efficient Catanable Priority Queue with Attrition (I/O-CPQA)

supports the following operations in O(1) I/O’s worst-case and O(1/B) I/O’s

amortized:

• InsertAndAttrite(Q,e) – appends e to the end of Q and deletes all

attrited elements in Q that are smaller than e, i.e. returns Q’={e’ єQ | e’

< e} U {e}.

• DeleteMin(Q) – deletes the minimum element e = min(Q) from Q and

returns e and Q\{e}.

• ConcatenateAndAttrite(Q1,Q2) – Deletes all attrited elements in Q1 that

are smaller than e=min(Q2) and prepends the non-attrited elements

onto Q2, i.e. returns Q’={e’ єQ1 | e’ < e} U Q2.

A record consists of a buffer of [b;4b] elements and a pointer to another I/O-

CPQA Q where max(b) < min(Q). An I/O-CPQA Q consists of 2+kQ

functional dequeus C,B,D1, …, DkQ
 of records. All records in the dequeue

fulfills max(p) < min(q) where record p precedes record q in the same

dequeue. Also max(C) < min(B) < min(D1) and min(D1) is the smallest

element in all of the dirty dequeues Di. The essential size invariant to

guarantee the bounds is:

When we delete the minimum element from the I/O-CPQA we delete from

C, if this violates (*) then we take records out of B and put them into C, else

if kQ>1 we merge DkQ-1 and DkQ
 else we put the first record v of D1 into C

and we put the I/O-CPQA Q’ that v points to into Q, see the figure belew.

We build a (2Bε;4Bε)-tree with each leaf being an I/O-CPQA of B1-ε

elements and each internal node stores the concatenation of its childrens

I/O-CPQAs. This takes O(n) space since the I/O-CPQAs of the internal

nodes will only use O(1) blocks of space as they are functional.

When we receive an update we find the position in the tree and discards all

I/O-CPQAs on the same path and reconstruct the path bottom up.

When we do a 3-sided range query for [x1;x2] X [y;∞] we concatenate the

O(Bε log2Bε n) I/O-CPQAs in O(log2Bε n) I/Os and then call DeleteMin on the

resulting I/O-CPQA until the minimum element m returned is m < y, this

then takes O(t/B1-ε) I/Os.

The I/O Model

In the I/O model we have a memory capable of holding M elements and a

disk of infinite size. When we read or write to the disk we can read or write

B elements at a time, and the cost is 1 I/O, the cost is the same if we read

or write less than B elements at a time, hence we want to batch reads and

writes together.

Future Work

It is still an open problem whatever it is possible to obtain bounds of

O(logBn) for updates and O(logBn + t/B) for queries, or it is possible to

show a lower bound. The ε in our bounds comes because we need to load

Bε I/O-CPQAs and concatenate them in O(1) I/Os, which we are only able

to do if the buffer size of each record is B1-ε.

Previous / Our Results

Our result is the first dynamic orthogonal skyline reporting data structure in

the I/O model, all previous results are either not fully dynamic or are in a

different model.

References

[KTT 2012] Kejlberg-Rasmussen, Tsakalidis, Tsichlas – I/O-Efficient

Dynamic Planar Range Skyline Queries. Submitted to SODA 2013.

[BT 2011] Brodal, Tsakalidis – Dynamic Planar Range Maxima Queries.

ALP 2011.

I/O-Efficient Dynamic Planar Range Skyline Queries

MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation

Casper Kejlberg-Rasmussen

Aarhus University

Reference Model Insert / Delete Query

[BT 2011] Pointer Machine O(log n) O(log n + t)

[BT 2011] RAM O(log n / log log n) O(log n / log log n + t)

[KTT 2012] I/O O(log2Bε n) O(log2Bε n + t/B1-ε)

x1 x2

y

B

M Disk
Memory

… … … … … …

C(Q) B(Q) D1(Q) DkQ-1(Q) DkQ
(Q)

… …

C(Q) Dk1
(Q)

… … … … …
C(Q’) B(Q’) D1(Q’) DkQ

(Q’)

… …

… …

… …

… …

… …

… …

… …

… …

… … … …

Degree Bε

Buffer size B1-ε

x

… …

… …

… …

… …

… …

… …

… …

… …

… …

… …

… …

… …

x1 x2

(*)1|)(||)(|
1




Q

k

i

i kQDQC
Q

